
Data protection for LAMP applications

Paddy Sreenivasan (paddy@zmanda.com)

Today, LAMP has become the most common open source platform for developing web and
enterprise applications. Protecting the application data is of paramount importance to
system administrators. This paper discusses various open source data protection
techniques for LAMP applications. The paper also provides integrated open source
solutions that can be used for protecting LAMP application data.

We have seen an increase in the number of web and enterprise applications based on LAMP
application stack. LAMP applications use Linux or BSD as the operating system, Apache as the
web server, MySQL or PostgreSQL as the application database and PHP, Perl or Python as the
programming language. JBOSS is used as the middleware for some of these applications. The
common attributes of these layers are:

• They are open source and have a large developer and user community behind these
projects.

• They are available on multiple hardware platforms and are very well integrated.

An often overlooked aspect in the LAMP application solution is the protection of the application and
configuration data. This paper examines how to use available open source tools to protect the
LAMP application data. This paper does not discuss the security aspects of the application data or
securing the LAMP application servers. It is also important to test the data recovery scenarios
before the actual need arises.

LAMP Application data characteristics

From a data protection perspective, one of the key characteristics of LAMP application and
configuration data is that they reside on file systems or in MySQL or PostgreSQL databases.
Apache configuration is usually stored under /etc/httpd/ directory. PHP configuration files are
stored under /etc/php/ directory. Both MySQL and PostgreSQL data, index and other configuration
files are also commonly stored in file systems. Another characteristic is that LAMP applications
may be distributed on multiple servers. Distributed LAMP application servers provides more
scalability and availability for the applications. Enterprise and Web applications require highest
levels of availability with very little downtime available for backups.

These characteristics of LAMP applications data, (stored in databases as well as filesystems, and
potentially distributed across servers), make them challenging to backup. The system
administrator needs to pay attention to the data of all layers of LAMP application in order to get a
consistent data backup for the whole LAMP application stack.

Figure: LAMP application and where the application data resides

The type of data protection solution implemented depends on the impact on application
performance, application availability, type of failures to recover from and the cost of implementing
the solution. One of the key requirements for backed up data is the level of data consistency
required. There are two levels of data consistency:

• Application consistency: The backed up data is completely consistent i.e, the application
does not need to do any internal recovery when the backed up data is restored.

• Crash consistency: The backed up data is equivalent to the data in the persistent storage
when the application fails (aborts in a unexpected manner). The application (or other
components such as file system) will have to do internal recovery when the backed up data
is restored.

Very few applications support the capability of temporarily quiescing the application I/O at a
consistent point in time so that the data can be backed up. Database servers do provide such
capability.

Recovery from backed up data is done for recovering from operator errors, disk/filesystem failures,
application data corruption due to bugs, or complete application host failures. The data protection
solution used depends on the type of failures to recover from and how quickly the data should be
recovered.

Consistent backups of MySQL

MySQL provides two tools for backing up the databases. These tools are open source and are
available as part of MySQL distribution. The mysqldump tool creates a logical backup of the
database whereas mysqlhotcopy tool creates a physical (or raw) backup of the database. The
logical backup archive contains the MySQL statements to reconstruct the database data.
Whereas, the physical backup archive contains database data, indexes and logs in raw format
(database specific format). Both utilities do not maintain database referential integrity i.e, all the
tables are not backed up at the same time (or same consistency point). The tool used to backup
MySQL depends on the storage engines used by the tables in the database. Storage engines that
support transactions such as InnoDB, BDB, Solid, MySQL's Falcon (in future) can be backed up as
a transaction without any impact to the database application availability. These backups are
usually referred to as "hot" or "live" backups. Storage engines that do not support transactions

such as MyISAM, ARCHIVE, MERGE have to be backed up by obtaining a global read lock on the
database and flushing active database data and logs to the disk.

Logical full backups with mysqldump

Logical backup consists of SQL statements (CREATE TABLE, INSERT INTO) that can re-create
the complete database or a table in the database. The mysqldump tool creates logical backups of
MySQL database or tables for all the storage engines. Command line options used for doing
optimal mysqldump backups are dependent on whether the underlying storage engine supports
transactions or not.

mysqldump [options] db_name [tables]
mysqldump [options] --databases db_name1 [db_name2 db_name3...]
mysqldump [options] --all-databases

Common set of mysqldump options that are used for backing up databases are:

--opt and --extended-insert options generates optimized SQL statements. These options will
speed up the restore operation and create smaller backup files. --opt option is necessary to create
correct DDL statements (CREATE TABLE).

--lock-all-tables and --flush-logs options lock all tables in the database and flushes the data. All
pending transactions are committed. These options are necessary for non-transactional storage
engines such as MyISAM, ARCHIVE and MERGE. Obtaining read lock on all tables in an active
database during the backup may not be feasible. If you are using snapshot or replication data
consistency mechanisms described in later sections of this paper, it may not be necessary to lock
all tables and flush logs.

--single-transaction can create consistent backups for transactional storage engines such as
InnoDB and BDB. Either the lock-all-tables option or the single-transaction option should be used.

--master-data=2 writes the binary log file name and position to the backup output as an SQL
statement. It can help in point-in-time recovery.

Example: mysqldump command options to back up all databases containing only MyISAM
tables
--opt --extended-insert --lock-all-tables --flush-logs --routines --triggers --master-data=2 --all-
databases

One of the advantages of the logical backup is the data can be restored to another database
server. Logical backup is independent of the server architecture, filesystem type, and can be
recovered on a completely different database server. It is also possible to correct operator errors
(such as erroneous DROP TABLE statements) from logical backups. This is significant advantage
compared to Raw backups. The mysqldump tool can also be run on a different machine from the
MySQL server.

The disadvantage of logical backups is the backup file size can be larger than the actual database
(sometimes it is twice the size of the actual database). The restoration time from the logical
backup can be significant compared to Raw backups. All SQL statements in the logical backup
have to be re-run during the restore process.

Raw (physical) full backups with mysqlhotcopy

A raw backup consists of the database data in a binary format and will be different for machine
architectures. The mysqlhotcopy tool is a perl script that makes a copy of the data, index and data
dictionary files to the local machine or to a remote machine. This tool takes advantage of the fact
that database tables data, index and log files are stored in the database data directory configured
by the database administrator. The mysqlhotcopy tool works only for storage engines that do not
support transactions such as MyISAM, MERGE, ARCHIVE and will not work with storage engines
that support transactions such as InnoDB because database tables may not be stored in the
database data directory. The tool obtains a read lock on the tables/database being backed up and
flushes the database pages to the disk before doing a backup.

mysqlhotcopy --flushlog db_name_1 ... db_name_n /path/to/new_directory

Restoring from raw backups is significantly faster than the logical backups because the SQL
statements need not be executed. The raw backup size is same as the size of database data and
logs. Since it is a raw backup, it is not possible to correct operator errors.

Most of the engines that support transactions provides tools that helps create raw backups. The
SOLID storage engine provides its own backup tool that does binary backups. InnoDB provides a
commercial tool (ibbackup) that creates raw backups for InnodB tables. InnoDB also provides
innobackup script that takes care of backing of InnoDB tables, data dictionary (.frm files), and other
MyISAM tables using mysqldump tool.

Incremental backups

MySQL server can maintain binary logs which contain all events (MySQL statements) that updated
data or could have updated data. Binary logging must be enabled to do incremental MySQL
backups. Binary logs keep track of all changes to the data in the database and can be replayed
later to restore the database. Enabling database logging can reduce the database performance.
The binary log location can be put in a different disk from the MySQL data directory so that the
performance impact is reduced. This will also help improve availability.

Example: Binary log files with prefix "backup_logs" are created
mysqld --log-bin=backup_logs

Binary logs are rotated when the MySQL server is restarted. Rotate binary logs to mark when the
incremental backup was done. The mysqladmin flush-logs command rotates the binary logs. The
binary logs since the last full MySQL backup or the incremental backup can be backed up using
network backup tool.

Data consistency using snapshots

The MySQL database data directory can be stored in logical volumes that are managed by the
Logical Volume Manager (LVM) or the Enterprise Volume Management System (EVMS). Using
logical volumes to store data and index files allows the volume to be extended to multiple physical
disks, file systems can be extended using the filesystem growfs command. Logical volumes can
be mirrored to increase database availability. Snapshot of logical volume contents to another
logical volume can be done in LVM as well as EVMS. The snapshot volume is a copy-on-write

volume i.e, the data is written to the snapshot volume on when the data block on the original
volume changes. No data copying is done when snapshot of logical volume is created.

To create a consistent copy of the database, a snapshot of the logical volume that contains the
MySQL database data directory is created.
It is necessary to flush tables and obtain a read lock before taking a snapshot. Obtaining a read
lock on an active database might take some time. Since snapshots are copy-on-write copies, a
snapshot operation does not take much time. The lock can be released after the snapshot
operation and is not held during the backup processes. In case of tables with transactional storage
engines such as InnoDB, it is not necessary to obtain a read lock. When backed copy of the
database is restored, the database will be recovered from the transaction logs. Obtaining read lock
on a transactional storage engine table will commit all pending transactions and there will be a
significant impact on the performance.

The following steps show how to do backups using snapshots to achieve data consistency:

Step 1: Obtain a read lock on the database and flush logs. This step is necessary if the database
being backed up contains tables with non-transactional storage engines or specific tables with non-
transactional storage engine have to be backed up.

mysql> FLUSH TABLES WITH READ LOCK

Step 2: Create a snapshot volume for the logical volume where the database data directory
resides (mysqlvolume in this example) The following LVM command creates a snapshot volume
"mysqlbackup" of size 50MB. The data changes during the backup cannot exceed 50 MB. Usually,
a snapshot volume size of 15-20% of the original volume size is created. If the database is really
active, a larger snapshot volume size might be required.

lvcreate -L50M -s -n mysqlbackup /dev/mysqlvolume

Step 3: Release the read lock on the database if lock was obtained on Step 1.

mysql> UNLOCK TABLES

Step 4: Mount the snapshot volume in a different directory.

mount /dev/mysqlbackup /backup

Step 4: Use the network based backup tool, Amanda, described in the next section, to backup the
database backup files from /backup directory and application files to backup media such as disks,
tapes, optical media.

Step 5: Remove the snapshot logical volume.

lvremove -f /dev/mysqlbackup

Using EVMS instead of LVM for logical volumes, provides additional advantages and reduces the
complexity of the backup procedure. EVMS allows the snapshot volume to be expanded. This will
take care of long backup windows in case the initial size of snapshot volume is small. With
EVMS, a snapshot volume can be created permanently. The snapshot volume can be reinitialized

as the step 1 and the snapshot volume need not be removed at the end of backup. The snapshot
volume can be used to rollback changes to the original volume. The snapshot volume acts as a
data backup and the snapshot rollback is a quick restore mechanism.

Filesystem freeze and unfreeze operations should be used along with data snapshots to provide
better data consistency for the database and the application files. Filesystem freeze operation is
supported by file systems such as XFS, GFS and must be used in conjunction with logical volume
manager snapshots to obtain a consistent view of the database and application files. Filesystem
freeze operation should be done before step 2 and unfreeze operation should be done after step
2. If ext3fs filesystem is used as the filesystem for the LAMP application and the filesystem data
and meta-data journaling is enabled, file system freeze and unfreeze operation is not required.

Following command freezes the XFS filesytem /var/lib/mysql in preparation for the backup:

xfs_freeze -f /var/lib/mysql

Following command unfreezes the XFS filesystem:

xfs_freeze -u /var/lib/mysql

Data consistency using replication

MySQL allows creation of replication slaves for the master server. Multiple replication slaves can
be created for a master server and a replication server can act as a master server. All the
transactions that are executed on the master server are replayed on the slave server
asynchronously. MySQL commands are sent to the slave server for execution. The slave server
can be behind the master replication server if the slave is slow in executing the MySQL
commands. This feature is available for all storage engines. This is referred to as statement-
based replication.

MySQL 5.1 supports row-based replication in addition to statement-based replication. The master
server creates a binary log of how the table rows are affected by each statement and the binary log
is replicated to the slave. Row-based replication handles replication of stored routines and
triggers, such as non-deterministic user defined functions, correctly. Statement-based replication
produce smaller logs and are easier to audit. A "mixed" mode of replication is also supported in
MySQL 5.1 that uses statement-based replication by default and uses row-based replication for
MySQL statements that use functions that will give different results when executed on master and
slave server.

One use for replication server is for backup. Replication can be used for database high-availability
and load balancing. The replication slave has a consistent view of the database and backed up
using any of the MySQL backup methods described in the above sections. The following steps
assumes that replication slave has been set up for backup purpose.

Step 1: Stop the slave replication and check the slave status on the slave server to see if the
replication has stopped

mysql> STOP SLAVE;

Step 2: Capture the master log file name and position from "slave status" command

mysql> SHOW SLAVE STATUS;

Step 3: Perform any of the above MySQL backup methods to capture the database to files.

Step 4: Add "CHANGE MASTER" MySQL statement to the backup file using the values obtained
in step 2. This step marks the master log file and the position in the log file. Marking the log
position makes backup restoration easier.

Step 5: Use Amanda described in the next section to backup the database backup files and
application files to backup media such as disks, tapes, optical media.

Step 6: Start slave process

mysql> START SLAVE;

Using replication for backup does not take care of operator errors because such errors are also
replicated. Replication solution is more expensive than snapshot solution because it needs
additional MySQL host. On the other hand, if replication is being done for availability or load
balancing, it can be easily used for backup purpose as well.

Consistent backups from PostgreSQL

PostgreSQL provides multi-version concurrency control. Multi-version concurrency control makes
creating database consistent backups relatively easier. Database consistency using snapshots
can be also performed. This would be equivalent for recovering from a PostgreSQL server crash.

Logical full backups

There are two tools - pg_dump, pg_dumpall that create logical backups of the database into a
backup file. To avoid file size restrictions due to file system limits, the output of these commands
can be sent to split command. These tools can be run on any machine (not only on the machine
running PostgreSQL postmaster server).

Example: Dumping a postgres database to multiple files with names starting with
"pg_backup"
pg_dump postgresdb | split -b 1024m - pg_backup

Raw (Physical) full backups - Continuous archiving

PostgreSQL 8.1 keeps track of all changes made to the database data files in Write Ahead Logs
(WAL) under pg_xlog sub-directory of the cluster data directory. Write ahead logs can be archived
in a different directory before the logs are reused by the database. These logs can be copied to a
directory backed up by the network backup tools as described later in the paper. The following
example shows how WAL can be archived to a different directory.

Example: Copy WAL to /backup/postgres/WAL directory. Add the following shell command

to the postgresql.conf file
archive_command = 'cp -i %p /backup/postgres/WAL/%f < /dev/null'

Note: It is necessary to backup configuration files such as postgresql.conf, pg_hba.conf and
pg_ident.conf separately.

To do a full raw online backup, perform the following steps as the database super user:

Step 1: Execute the SQL command
SELECT pg_start_backup('backup_id1');

The backup information (backup label, time of command execution, name of first WAL segment
file) are stored in the /backup/postgres/backup_id1 file.

Step 2: Perform backup of the file system backup of the database data directory
(/usr/local/pgsql/data). Exclude the WAL files under pg_xlog sub-directory. These files are already
backed up by the archive command.

Step 3: Execute the SQL command to inform that backup is complete
SELECT pg_stop_backup();

Stopping backup creates a backup history file in the WAL archive location. The starting WAL file is
used as part of the backup history file. WAL archival operation will be complete after the backup
stop command is executed.

All files under the WAL archival and the database data directory must be backed up using the
network backup tool as described later in the paper.

Incremental backups

All automatically archived WAL logs can be used as incremental backups. Use the network
backup tool to perform incremental backups of WAL archive directory.

Network based backup and recovery

After getting a consistent data copy using replication or snapshots, network based backup and
recovery tools can be used to backup the data into various media such as tapes, disks, optical
devices and NAS appliances. Amanda is the most popular open source backup and archiving
tool. Amanda is an active sourceforge project with tens of thousands of users and hundreds of
developers. This open source project has been part of public domain since 1991 and is available
as part of various Linux and BSD distributions. Latest packages are available at
http://www.zmanda.com/downloads.html As of writing of this paper, Amanda 2.5 is the latest and
stable release. Amanda can be used to backup multiple servers running the LAMP applications in
the same backup run or in different backup runs. Amanda server can run on one of the LAMP
application servers or on a dedicated Amanda backup server. Amanda backup server will be
utilized only during a backup run and will be idle at other times.

One of the unique features of Amanda is the consistent backup window. Amanda attempts to
backup the same amount of data from the various backup clients running LAMP applications in

each backup run. Amanda will distribute the full backup for each client (actually each backup unit)
over the backup cycle days to achieve same amount of backup size each run. For system
administrators it provides consistent backup window for each backup run without having to tune the
backup configuration.

In the following figure, three client file systems are being backed up daily by Amanda. In the first
backup cycle, a full backup for all filesystems are performed by Amanda. Amanda based on the
amount of backup daily media available and amount of data changes in each client file system
constructs a backup plan of backup levels (full, incremental backup levels 1-9) for each backup
run. Full backup is backup level 0. All file systems have at least a full backup done every backup
cycle days (Amanda configuration parameter). As the figure shows, the amount of data backed up
is almost the same for each run resulting in consistent backup windows.

Figure : Amount of data backed up each daily run

Amanda uses platform tools for backup, data compression and encryption. It uses tools such as
GNU tar, file system dump and Schily tar for backup and can use any tool that is available in the
client. Amanda uses the tool's data format on the backup media. This feature allows the possibility
of restoring data without using Amanda. All Amanda backup media can be read using dd and mt
commands. In fact, the Amanda media file header has the command to restore the media as a text
string.

Example: Using dd command to display Amanda tape file header
dd if=<amanda_media_dev> bs=32k count=1
AMANDA: FILE 20060228 natasha /boot lev 1 comp N program /bin/gtar
To restore, position tape at start of file and run:
 dd if=<tape> bs=32k skip=1 | /bin/gtar -f... -

1+0 records in
1+0 records out

Amanda can backup to tapes, disks, optical media, media changers and RAIT. RAIT stands for
redundant array of tapes (in fact, it works for any media volume). It is similar to RAID in concept,
the backup data is striped across multiple media volumes and the parity information in another
media volume. RAIT with 2 volume set is same as mirroring backup data across two media
volumes. Using RAIT with a two volume set of disk and tape media, the backup can be done to
disk (for immediate recovery needs) and to tape (for archival needs) simultaneously.

Amanda allows lots of configuration flexibility in specifying on how backup should be done up to a
granularity of a file. Users can specify type of compression, encryption, whether they should be
performed on Amanda client or server, which network to be used for backups for each backup unit.
To reduce the complexity introduced by the configuration flexibility, configuration tools are
available for first-time Amanda users.

Amanda supports both data consistency mechanisms for LAMP application backup - snapshots as
well as replication. Amanda server is scalable and can backup hundreds of LAMP application
servers in each backup run. The commands to prepare the data for consistent backups can be
done as pre-backup action before Amanda backup. Since any platform commands can be used for
backing up applications using Amanda, it is easy to use different data protection mechanisms for
different LAMP application servers in the same Amanda configuration. Amanda developers are
working on a Application API that will make addition of new backup programs for applications
easier.

Some Amanda users backup LAMP application data including the MySQL databases to a
temporary directory in a file system. Later, the file system directory is backed up by Amanda
during the backup run. This method allows quicker recovery from the temporary filesystem and
recovery from Amanda media for longer term needs.

Amanda users and developers use the Amanda wiki (http://wiki.zmanda.com/) for documenting the
project as well as how they incorporate Amanda in the overall IT processes.

Recovery process

Data from the backup archive can be recovered using Amanda recovery tools - amrecover and
amrestore commands. The amrecover tool allows users to browse the index database and allows
users to choose the backups to restore from. This tool can be run on any machine where Amanda
client software is installed. It is always advisable to restore backups to a temporary directory
location. Application files can be restored to the correct location on the LAMP application server.
MySQL and PostgreSQL database can be restored from mysqldump and pg_dump backup files
respectively. Full backup restoration can be done only when the database and application
process are not running.

Example: Complete restoration for database "database1" using mysqldump backup file
"mysql_backup"
mysql database1 < mysql_backup

Example: Complete restoration of a Postgres database from pg_dump backup files with
starting with "pg_backup"

cat pg_backup.* | psql postgresdb

To restore PostgreSQL database from the raw backup files, recreate the PostgreSQL cluster data
directory from the restored files. It is advisable to make copy of the existing contents before
restoring files from the backup. The pg_xlog sub-directory can contain WAL that were not
archived. Recovery process is controlled using recovery.conf file in the cluster data directory.
This file contains the location where archived WAL logs can be found.

Example: recovery.conf file showing where the archived WAL logs will be copied from
restore_command = 'cp /backup/postgres/WAL/%f %p'

Incremental restores

Incremental restores can be done from the MySQL binary log files restored to the temporary
directory by Amanda network backup tool. The incremental restore can be done from a start time
to an end time or starting log position to ending log position in the binary logs. The log position can
be used to fix operator errors using the backup files.

Example: Incremental restore of all MySQL database changes done till May 1, 2006
mysqlbinlog --stop-date="2006-05-01 12:00:00" backup-logs.[0-9]* | mysql -u <user name> -p
<password>

PostgreSQL incremental restores can be done using settings in recovery.conf in the cluster data
directory. It is possible to specify end timestamps for recovery or end transaction id for recovery.
When the postmaster process is restarted and the restore_command is used to retrieve the
archived WAL segments up to the specified stop point either the date/time stamp or the specific
transaction id.

It is critical to test the data recovery procedure for LAMP application on a regular basis.

Backup security

Security is important for any data protection process. The data must be stored in the backup
media in a secure manner using encryption. The keys used for encryption should be tracked and
kept in a secure database that is also backed up. Amanda's flexibility in encrypting data on the
backup client where LAMP applications are running or on the Amanda server provides more
options in securing the data. Secure communication should be used during the backup using tools
such as OpenSSH or network tunneling.

MySQL and PostgreSQL database backup and restore users should be created with minimum
privileges required to backup and restore the database. For Example: Minimum privileges for
backup user for mysqlhotcopy and mysqldump tools are SELECT, RELOAD, LOCK TABLES. The
database user and password must be stored in a secure manner.

Conclusion

This paper provides a window into protecting the critical data stored in LAMP applications using
open source tools and examples of putting the tools together to create a complete solutions.

Several open source data protection tools are available for LAMP applications. These tools can
be used to create secure backups for LAMP applications. Increased use of LAMP technologies for
web applications, data warehousing applications and enterprise applications make it necessary to
protect the customer data used by these applications.

The many new and exciting open source developments in the data protection field, such as
creating backups while maintaining database referential integrity and using storage available over
internet as backup media, allow creation of just the right LAMP backup solution for an individual
sites' needs.

Links

• MySQL backup tools: http://dev.mysql.com/doc/refman/5.0/en/disaster-prevention.html
• MySQL backup forums: http://forums.mysql.com/list.php?28
• PostgreSQL backup tools: http://www.postgresql.org/docs/8.1/static/backup-online.html
• Amanda wiki: http://wiki.zmanda.org/
• Amanda forums: http://forums.zmanda.org/

	Data protection for LAMP applications
	LAMP Application data characteristics
	Consistent backups of MySQL
	Logical full backups with mysqldump
	Raw (physical) full backups with mysqlhotcopy
	Incremental backups

	Data consistency using snapshots
	Data consistency using replication
	Consistent backups from PostgreSQL
	Logical full backups
	Raw (Physical) full backups - Continuous archiving
	Incremental backups

	Network based backup and recovery
	Recovery process
	Incremental restores

	Backup security
	Conclusion
	Links

